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Approx imate  solutions of p rob lems  of t he rma l  conductivity in a moving layer  a r e  obtained 
by the B r o v m a n - S u r i n  method [5] and in tegra l  heat balance method [8]. 

Solutions of the equation of t he rm a l  conductivity for  the case  of heating of bodies in a para l le l  flow 
and in a counterf low have a complex fo rm even in the case  of a constant water  equivalent of gases  [1-4]. 
In addition, calculat ion of the eigenvalues of the prob lem is a quite labor ious  operat ion which compl ica tes  
the appl icat ion of the solutions of l inear  p rob lems  to calculat ion of p r o c e s s e s  with va r i ab le  c h a r a c t e r i s t i c s  
by means  of succes s ive  approximat ions .  Approximate  solutions of l inear  p rob lems  a r e  given below. 

1. The Water  Equivalent of Gases  is Constant. The problem is formulated as follows: 

l?l 0 

2v +2 

or(p, X) = 02t(9, X) + 2v + l Or(p, X) , 

OX O f  p Op 

Or(l, X ) + B i  (1 X)]=O, or(o, X ) = o ,  
Op Jig(X) m t , 00 

dtg(X) motm~ dqav(X) 
-T- Bi [tg(X) - -  t (1, X)] 7+ Bi~ Jig(X) ~ ten], 

dX " 2~ + 2  dX 

(1) 

(2) 

(3) 

t (v, o) = to @,  tg(o) = tsi t (o, x)  < oo. (4) 

The upper  sign is for  the para l le l  flow and the lower  for  the counterflow. 

r ax aR KR 17 
9 = ~ R - '  x -  vR ~ , B i -  , B i  t -  , 

, tmax = - -  , 7.) : 

oc ~Cg vf~ 

/pl =2b, /cy- ~b ~__ s~/2R' fsp~ F(1--foI).  

According to [5], we seek  the approx imate  solution of p rob lem (1)-(4) in the fo rm 
4 

t (p, x )  = ~ f~ (X) p~. 

To fulfill the second of conditions (2) fl = f3 - 0. Substituting (5) into (1), equating t e r m s  with the s ame  
powers  of p, and neglect ing the quantity p4f~(X) in compar i son  with the o thers ,  we obtain the re la t ions*  

* Here  and hencefor th  different ia t ion with r e spec t  to X is denoted by 'a  pr ime.  

(5) 
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' fo" h fo , h =  (6) 
2 (2v + 2) 2.4 (2v + 2) (2v + 4)" 

Then substituting (5) with consideration of (6) into (2) and (3) and solving them simultaneously,  we 
obtain the following differential  equation for f0(X): 

d3fo"'-[- d~fo"+dafo'+ dofo= doo (X) • Bilten 

d3 = m o 1 z 1 1 ),  
2v +2  2 (2v +2) (2v +4) I - ~  -? --~-1 d~ • Bi. (7) 

1 1 
~ - )  • 2(2v+4) 

(s) 

Having determined f0 f rom (7) and substituting it into (5), with consideration of (6) we obtain the following 
approximate express ion for t(p, X): 

p2D' (X) p~D " (X) 
t (P, X) = ten + D (X) -+ + 

2 (2 v+2) 2.4 (2v +2) (2v -~4) 

~ C [  P~6~ P46~ ] exp (6~X). 
+ ~  ~ 1+2(2~+2)- [  2.4(2v+2~(2~+4) 

i ~ l  

(9) 

Here  D(X) is the part icular  solution of inhomogeneous equation (7) with right-hand side d00(X); the 6 i a r e  
the roots  of the charac ter i s t ic  equation 

d383+ d26~+ d16 + do= O. (10) 

We obtain the express ion for the t empera ture  of the gases f rom boundary condition (2) by means of 
(9) 

+ 

tg(X) = ten ~ + D (X) ~+ 2v +2  - ~  

(4--)  [ (+ 1) D" ( X ) , ! + E C + 2 Uz + -BT 
2 (2v +2) (2v+ 4) T Bi ~=1 

6~ ( + +  I )]exp(6iX)" 
+ 2 (2~ +2)(2,a +4) -B~ 

(11) 

An analysis  shows that for real  cases  roots  (10) a re  prime,  real  numbers,  all of them being negative 
for the case of paral lel  flow and one of them being positive for counterflow. 

If the law of burning of fuel can be approximated by the exponential curve 

a v  q3 (X) = qO exp (-- kX) for parallel flow, 

qav(x ) = qO exp [ - -  k (L1-- X)] for counterflow, 

then D(X) has the form 
moktmaxq~ v (X) 

D (X) = (2v +2) (d3k3-T - d2U+ dlk ~ do) (12) 

The average tempera ture  of the body is 

D' (X) D" (X) 
lay (X) = ten + D (X) + + 

2(2v +4) 2.4 (2v +4) (2v +6) 
3 

Ci  1 + 4- exp (6~X). -5 2 (2v +4) 2-4 (2v +4) (2v 
(13) 
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The  coe f f i c i en t s  C i can  be  d e t e r m i n e d  by the we l l -known  method [6] f r o m  s y s t e m  of Eqs.  (9), 
so  t l~ t  s o m e  of the  in i t ia l  condi t ions  

tg(O)=tg i, t(1, 0 ) - - t ( 0 ,  0 ) =  AtOm, 
1 

�9 tar(0 ) = ta~ = (2v +2),! '  t o (P)P2"+IdP 
0 

(11), and (13) 

a r e  fulf i l led fo r  X = 0. 

2. The  W a t e r  Equiva len t  of the G a s e s  is Var i ab le .  In th is  c a s e  it i s  expedient  to take  a pos i t ive  
d i r ec t i on  with r e s p e c t  to the  path of the g a s e s  both fo r  the p a r a l l e l  f low and counter f low.  We will  a s s u m e  
tha t  the w a t e r  equ iva len t  of the g a s e s  in the d i r e c t i o n  of t he i r  t r a v e l  i n c r e a s e s  l inear ly :  

Wg--ao+ alz, 

i .e . ,  the fuel  i s  d e l i v e r e d  th rough  end b u r n e r s  and u n i f o r m l y  th rough  s ide  b u r n e r s .  
duces  to so lv ing  the s y s t e m :  

(14) 

Then  the p r o b l e m  r e -  

0l(p, Z) 02{(p, Z) 2vff-1 Or(9, Z) ~+ - -  + _ _  , 
OZ 092 9 09 

at( l ,  Z) O,o + Bi [fg(Z) - - t (1 ,  Z)] =0, Ot(O,o,o Z) = O, 

(is) 

(16) 

m~ - ~ - m i B i Z ) ~  (g~_Z) R dQ 
, 2 v + 2  dZ = )~f ~-d~ q - m ~ B i [ t ~  Z)] - -  Bij [tg(Z) - -  t en ], (17) 

t (p, o) = to (p), tg(o) = tg~, 

Z -- az a. a~ (18) vR- ~ ,  tool= C--~' ml . . . .  --~-. 

The so lu t ion  of a s i m i l a r  p r o b l e m  The  uppe r  s ign  is  fo r  p a r a l l e l  f low and the lower  fo r  counter f low.  
fo r  thin bod ies  when Q -- cons t  i s  g iven  in [7]. 

The  so lu t ion  of s y s t e m  (15)-(18) is  found by  m e a n s  of the i n t eg ra l  hea t  b a l a n c e  method [8] in the f o r m  

t (p, Z) = Ao (Z) + AI (Z) p~. (19) 

E x p r e s s i o n  (19) s a t i s f i e s  the  s y m m e t r y  condi t ion when n > 1. 

Subst i tu t ing (19) into (15) and i n t e g r a t i n g  the l e f t -  and r i gh t -hand  s ides  with r e s p e c t  to p f r o m  ze ro  
to unity,  we  obta in  

++_ dA o (Z) + I dA~ (Z) n (2v +n) A x (Z). (20) 
dZ - n -]-1 dZ n --1 

Solving s i m u l t a n e o u s l y  (16) and (17) wi th  c o n s i d e r a t i o n  of (19) and then apply ing  the L a p l a c e  t r a n s f o r m  
to the n u m e r i c a l  e x p r e s s i o n  and to Eq. (20), we obta in  the fol lowing s y s t e m  of equat ions:  ( 0 )  

o Al AI  Zo=_ + ~ 2 ~ + ~ .  1 Ao+_%__i_ ~ + l  n - - 1  s ' '  ~ -  ' (21) 

L2v+ 2 - ~ -  q-n  q- Bi 1 ,, lq- ~ ] -  = qS(s)-- 2,,;@2 m~ t.gl miBit~q-Bil ten 's  (22) 

In (21)-(22) the  s u p e r i o r  b a r  deno tes  L a p l a c e - t r a n s f o r m e d  funct ions  A0(Z ) and At(Z),  it be ing  a s s u m e d  
tha t  A0(0) = A ~ A~ (0) = A ~ 

| = d: exp(--sZ) dZ O 

o d d z  

Solving s i m u l t a n e o u s l y  (21) and (22) and a s s u m i n g  that  ~(s)  can be r e p r e s e n t e d  as  a s e r i e s *  

* Th i s  holds t r ue  if Q (z) is  expanded in power s  of z. 
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| l,~ 
4,(s) =~__~ s ~ , 

we obtain for -A1 the following equation: 

d-~- (g~ q-~t~ + bo+ bls) + c-__!_1 + C o ,  ~ /m.m =0, 
S m = l  S 

go= • n (2v+n),  g l = m l n ( B i + n + l )  
7~ n--1 n + l  

b ~ =  -T- (m~Bi + Bi~) n @  1 (2~ + n), 

bo ~ tool n (2v +- n)--Bi~ n (Bi + n + 1) 
2v+2  n - - [  Bi(n +1) 

bt tool n (Bi + n +1),  
2v +2 Bi (n + I) 

c_1= (m~Bi t~+.Biden: ) -- (m~Bi + Bi 0 ( Ao ~ + 
n + ! ] 

H~01 [k[tgi--(A~ A~ / ]  C o - - - -  
2v+2 n + l  /J  

We seek the solution of (24) in the form 

(23) 

(24) 

(2s) 

A~ = ~'~.~ D.~ (26) 
S m 

tn~l 

Substituting (26) into (24) and equating the coefficients of like powers of s to zero, we obtain the fol- 
lowing recurs ion  sys tem for determining Din: 

biD 1 + c o = 0, 
(bo - -  gl) Dt + c-i  + biD2 - -  ll ~ O, (27) 

(b-1 - -  go m) D m +  [bo - -  gl (m + 1)] Dm+ I + blDm+ 2 --/rn+l : O. 

From the f i rs t  relat ion we have 

D , =  B i ( n + l ) [ t g  _(AO + 1 AO)] 
ngi ; :l) i n + l  " 

Knowing A1, we can determine A0 f rom (21). Having performed an inverse Laplace transformation,  
we finally find the expression for t(p, Z) 

- -  n + l  + D 1  p~ n + l  

m = l  

We can determine the tempera ture  of the gases by using (16) and (28): 

t n(Bi + n +  1) 
t g(Z) = A~ ~-  - A~ @ D 1 

n + I Bi (n + I) 

+ ~. .  __t_ _ ~  I Z  m n (2v+n) D,~ + --Bi(n+ 1) " 
m = I  

The average tempera ture  of the body is 

(29) 

222 



~4 73 

~73 

67,.7 

273 

Z 

2 

J 

/ q-; 
8O0 

~ 5  

o 7 

0 
3 X 

u 

1273 

873 

473 

7~ 

l 

I 2 3 ~ Z 

CT 
8~ 

4.o0 

Fig.  1 Fig. 2 

Fig.  1. Heat ing of a plate in a counter f low fo r  Bi = 1, Bi 1 = 0.02, m 0 = 2, qaV(X) = 0. 1) 
T e m p e r a t u r e  of ga se s ;  2) of s u r f a c e ;  3) of ax i s ;  4) q (R/Z) ;  5) exact  solut ion;  6) a p p r o x i -  
m a t e  solut ion by the B r o v m a n - S u r i n  method ( formulas  (9), (11)); 7) the same ,  by in teg ra l  
heat  ba lance  method ( formulas  (28), (29)) f o r  n = 2. 

Fig.  2. Ca lcu la t ion  of the  heat ing of a plate  in a counte r f low fo r  m01 = 0, m 1 = 0.25, Bi = 1, 
Bi 1 = 0.02, n --- 2, Q(z) = cons t  by f o r m u l a s  (28), (29). 1) T e m p e r a t u r e  of ga se s ;  2) of 
su r f ace ;  3) a v e r a g e  fo r  m a s s ;  4) of ax is ;  5) q (R /~ ) ;  6) p r e s u m e d  change of c o r r e s p o n d i n g  
va lues  dur ing  ini t ial  per iod  of heating.  

tav (Z) = Ao ~ + 1 ___ A o .+. D~ n (2v -i- 1) 
n q- 1 (n q- 1) (2v q- n q- 2) 

__= Z'~ [ n (n+n(2~q-1)l)(2v-bnq-2) ] ~- E - -  + - -  (2v q- n) D~ -~ D,~+I �9 (30) 
' " m !  n - -  1 

An inves t iga t ion  of the c o n v e r g e n c e  of the s e r i e s  in (28)-(30) by means  of the d ' A l e m b e r t  t es t  [6] showed 
that  when m01 = 0 they  c o n v e r g e  fo r  a l l  f ini te  va lues  of Z. 

If m01 = 0, it is  no longer  poss ib le  to a s s i g n  the value  of tgi, s ince  the wa te r  equivalent  of the gases  
at  point  Z = 0 is  a l so  equal to zero .  In this c a s e  we m e a n  by tgi i ts  l imi t ing  value  when m01 ~ 0. It is  de -  
t e r m i n e d  by the second of r e l a t i o n s  (27) when b 1 ~ 0. 

We will  a s s u m e  that  on the whole the flow of g a s e s  does not have an  effect  on the burn ing  of fuel in 
an e l e m e n t a r y  jet. Then we can show that  the quant i ty  of chemica l  e n e r g y  of the combus t ion  p roduc ts  pass ing  
th rough  a g iven sec t ion  of  the fu rna c e  in unit t ime  is de t e rmined  by the e x p r e s s i o n  

z 
av  Z ~ ay Q (z) = aotm axq~e( ) q- altmax qas (Z - -  s) de.. 

3 
0 

The s u b s c r i p t s  e and s of q~V(z) ind ica te  that  they pe r t a in  to the end and s ide  b u r n e r s .  

A p p r o x i m a t i n g  qaV(z) by the exponent ia l  cu rve  

ay 0 
q3 e (z) = q aeexp (--  keZ), q~V(z) = q~s exp (--  k~z), 

with cons ide ra t i on  of (31) we obtain 

~.fR dQ=dz t r , ~ ( ~  m~ Keq3eexp~ (__KeZ).mlBiqOsexp(__KsZ)].  

(31) 

(a2) 

(as) 
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TABLE 1. Compar i son  of the Approximate  p -  
and Exact ~-Values  of the Eigenvalues for  Bi 
= 1.0, Bi I = 0.02, and Constant Rat io of Water  
Equivalents 

tno 

0,5 

2,0 

Forward flow Counterflo~r 

0,115 0,115 
1,47 1,48 
3,47 2,58 
0,0817 0,0816 
1,05 1,05 
3,44 2,55 

0,922i 0,917i 
0,190 0,188 
3,39 2,53 
0,14i 0,14i 
0,617 0,617 
3,42 2,54 

Expanding the exponents of (33) in s e r i e s  and 
per forming  a d i rec t  Laplace  t r ans fo rmat ion ,  we obtain 
the following express ion  for  the coeff icients  l m of ex-  
p re s s ion  (23): 

lm (__l)mtmax ( r%1 Km 0 B' 0 . . . .  1\ = e qae-- rrq 1 q~6/ks / .  (34) 
~ 2 v +  2 ] 

For  check calculat ions,  when the t e m p e r a t u r e  
of the gases  at  the s i te  of charging the meta l  is known 
also for  the counterflow, it  is  advantageous to place 
the or igin of the coordinates  a t  the s i te  of charging the 
metal .  In this case  express ions  (27)-(30) hold t rue;  in 

(25), as  is  usual for  a counterflow, it is  n e c e s s a r y  to take the lower signs everywhere  and only the rea f t e r  
take the values  of gl, b0, and c_ 1 with the opposite sign, i .e . ,  

n (Bi + n +  1) 
gl ~ - -  m! ) 

n + 1  

be=__  m01 n ( 2 v + n ) + B i  i n ( B i + n + l )  +n,  (25a) 
2 v + 2  n-:-I  Bi(n 4- l) 

( " 
c_ 1 = - -  (mt Bi t~ 4- Bit ten ) q- (mr Bi 4- Bit) A ~ q- n+lA~ )'\ 

Here  it is  n e c e s s a r y  to bear  in mind that the value of m01 is taken with r e spec t  to the wa te r  equi-  
valent  of the gases  at  the s i te  of charging the metal .  In addition, in (31) and (32) it is n e c e s s a r y  to rep lace  
z by L - z. Accordingly (33)-(34) will a l so  change. 

An analys is  of express ions  (28)-(30) obtained shows that in the genera l  case  the t empera t f i re  d i s -  
t r ibut ion at the init ial  instant  does not cor respond  to that given it(0, 0) ~ A ~ t(1, 0) ~ A~ + A~], but the 
initial  conditions with r e s pec t  to the ave r age  t e m p e r a t u r e  and t e m p e r a t u r e  of the gases  a r e  fulfilled exactly.  
This is  explained by the c i r cums tance  that  in deriving (28) we assumed  the fulf i l lment of boundary condi- 
tion (16) for  a t e m p e r a t u r e  dis tr ibut ion according  to (19) at  all  instants ,  beginning with zero.  This  means  
that  the re la t ion  

tg(Z) = t (0 ,  Z ) + ( 1  q- ~ i  ) i t ( l ,  Z) - - t (0 ,  Z)]. (35) 

always holds between the t e m p e r a t u r e s  of the gases  on the axis  and sur face  of the heated body. Actually 
(35) is  fulfilled only for  Z _> 0.3. If it i s  requi red  to ref ine  the solution for  Z < 0.3 and a uni form initial  
dis tr ibution of t e m p e r a t u r e s ,  we can use the idea of the depth of penetra t ion of a t he rma l  wave [8]. In 
meta l lu rg ica l  heat engineer ing the main  heating period, when (28)-(30) a r e  valid, is of g r ea t e s t  in teres t .  

Condition (35) is  fulfilled when calculating the heating of bodies in a counterflow and location of point 
Z = 0 at the si te of d i scharge  of the metal ,  s ince the distr ibution of t e m p e r a t u r e s  in the heated bodies at 
point Z = 0 is not a r b i t r a r y  but is governed by the preceding p rocess  of heating during which re la t ion  (35) 
was observed.  There fo re ,  if m0i > 0, ml >- 0 (i.e., tgi is  a l so  known), one of the following values  should 
be assigned: 

2v4-2  , t(0, 0 ) = A  ~ t(1, 0 )=A0  ~  ~ (36) 
tav(0) = A~ + A~ 2v -t- 2 -t- n 

Then we obtain two equations for  de termining  A~ and A~ one of them is determined by (36) and the other 
by (35) wri t ten for  Z = 0: 

tgi = A o + A ,  (1 - b ~  o .~_).n (37) 

If m01 = 0 and t(1, 0) and AtOm = t(1, 0) - t(0, 0) = A ~ a r e  ass igned according to the technological  conditions 
(i.e., A ~ and A ~ a r e  known), then tgi and m 1 a r e  determined by (37) and the second of re la t ions  (27). If we 
ass ign  only m 1 and tav(0), or  t(0, 0), or t(1, 0) i s  known, then tgi, A0 ~ and A ~ a r e  de te rmined  for  s y s t e m  of 
Eqs. (36), (37) and the second of re la t ions  (27). 
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The exponent n can be selected either by compar ison with the  exact solution or experimentally. In 
the case of heating bodies in an environment with a constant temperature ,  and also in a parallel  flow and 
counterflow when Wg = m 0 = const and moderate  values of Bi, we can take approximately n ~ 2 [10]. 

It follows f rom a compar ison of approximate formulas  (9), (11), (28), (29) with the exact solution 
of problem (1)-(4) obtained by Laplace t ransformat ion,  which is shown in Fig. 1, that, beyond the limits 
of the initial period, the expressions given here,  especial ly (28) and (29), approximate the exact solution 
sufficiently well. Since the values of the tempera ture  of the gases are  quite close to the exact also in the 
initial period, the t empera tu re  t(p, X) in this period, general ly  speaking, can be refined with the use of the 
known solutions [9] for boundary conditions of the third kind and variable tempera ture  of the medium. It is 
interest ing to note that Eq. (10) gives the squares,  taken with the opposite sign, of the approximate values 
of the eigenvalues, of which the f i r s t  two a re  quite close to the exact (see Table 1). 

We must  a s sume  that when m 1 > 0 there will be a sa t is factory agreement  of the exact and approxi-  
mate solutions. Figure 2 presents  the resul ts  of calculating the heating of a plate in a counterflow for m01 
=0 ,  m 1 =0.25,  Bi =1.0,  Bi 1 =0.02. 

Express ion (9), (11), (13), and (28)-(30) can be used for analyzing the effect of var ious fac tors  on 
heating of bodies and for construct ing the optimal regime.  

t, tg, r, x 

a, ~, o~ 
R 
K 
7/- 

V 

f 
Wg 
G 
Vg 

C, eg 

Lg 

P 

Vpl = I / 2 ;  
Vcy = 0; 
Vsp = 1 / 2 ;  
qaV(y) 

ten 
Z 

L 
b 

S l 

F 

f01 

K e = kevIt2/a, 
q 

NOTATION 

are the current temperatures of the body and gases, radius, and distance from the entrance 
of the bodies into the furnace;  
a re  the coefficients of thermal  diffusivity, thermal  conductivity, and heat t ransfer ;  
is the radius of the cylinder,  sphere,  or the half- thickness of the plate; 
is the coefficient of heat losses  of the working space; 
is the effective per imeter  of the furnace;  
is the l inear  velocity of the bodies in the furnace;  
is the heating surface of the bodies located per unit length of the furnace;  
IS the water  equivalent of the combustion products; 
IS the output of the furnace; 
is the quantity of combustion products passing through a given section of the furnace in unit 
t ime; 
a re  the heat capacit ies of the heated bodies and combustion products; 
is the heat of combustion of a unit of fuel; 
is the quantity of combustion products formed upon burning a unit of fuel; 
is the specific weight of the mater ia l  of the heated bodies; 
is the fo rm factor  [1]; 

is the average  chemical  undercombustion of the combustion products; 
is the tempera ture  of the environment far  f rom the furnace; 
is the distance f rom the gas input into the furnace (for a parallel  flow z = x, for a counterflow 
z = L - x ) ;  
is the length of the furnace occupied by metal;  
is the width of the furnace occupied by metal;  
is the distance between the axes of adjacent cylinders;  
is the c ross - sec t iona l  area  of the furnace (shaft) filled with spheres;  
is the rat io of the volume of voids to the total volume.of the furnace (shaft); 
is the tempera ture  of the combustion products entering the furnace through the side burners ;  
K s = ksvR2/a ; 
is the specific heat flux absorbed by the heated body. 

S u b s c r i p t s  

pl denotes the plate; 
cy denotes the cylinder;  
sp denotes the sphere;  
L i = a L / v R  2. 
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