APPLICATION OF APPROXIMATE METHODS TO THE
PROBLEM OF HEATING OF MASSIVE BODIES AT A

CONSTANT AND VARIABLE WATER EQUIVALENT
OF GASES

M. K. Kleiner UDC 536.24

Approximate solutions of problems of thermal conductivity in 2 moving layer are obtained
by the Brovman—Surin method [5] and integral heat balance method [8].

Solutions of the equation of thermal conductivity for the case of heating of bodies in a parallel flow
and in a counterflow have a complex form even in the case of a constant water equivalent of gases [1-4].
In addition, calculation of the eigenvalues of the problem is a quite laborious operation which complicates
the application of the solutions of linear problems to calculation of processes with variable characteristics
by means of successive approximations, Approximate solutions of linear problems are given below.

1. The Water Equivalent of Gases is Constant. The problem is formulated as follows:
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The upper sign is for the parallel flow and the lower for the counterflow.
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According to [5], we seek the approximate solution of problem (1)-{4) in the form

4
1o, X) = D fi(X) o (5)

i=0
To fulfill the second of conditions (2) f; = f; = 0. Substituting (5) into (1), equating terms with the same
powers of p, and neglecting the quantity p4f4' {X) in comparison with the others, we obtain the relations*

*Here and henceforth differentiation with respect to X is denoted by a prime.
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Then substituting (5) with consideration of (6) into (2) and (3) and solving them simultaneously, we
obtain the following differential equation for £,(X):
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Having determined f, from (7) and substituting it into (5), with consideration of (6) we obtain the following
approximate expression for t(p, X):
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Here D(X) is the particular solution of inhomogeneous equation (7) with right-hand side dy((X); the 6; are
the roots of the characteristic equation '

d38%-1- d,8*+ d,8 + dy= 0. (10)

We obtain the expression for the temperature of the gases from boundary condition (2) by means of
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An analysis shows that for real cases roots (10) are prime, real numbers, all of them being negative
for the case of parallel flow and one of them being positive for counterfiow.

If the law of burning of fuel can be approximated by the exponential curve
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then D(X) has the form
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The average temperature of the body is
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The coefficients C; can be determined by the well-known method [6] from system of Egs. (9), (11), and (13)
so that some of the initial conditions
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tay (0) = 3, = (2v +2) gt (p) p>+1dp

are fulfilled for X =90.

2. The Water Equivalent of the Gases is Variable. In this case it is expedient to take a positive
direction with respect to the path of the gases both for the parallel flow and counterflow. We will assume
that the water equivalent of the gases in the direction of their travel increases linearly:

wg:ao+ a2, (14)

e., the fuel is delivered through end burners and uniformly through side burners

. Then the problem re-
duces to solving the system:
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The upper sign is for parallel flow and the lower for counterflow, The solution of a similar problem
for thin bodies when Q = const is given in [7].

The solution of system (15)-(18) is found by means of the integral heat balance method [8] in the form

tp, Z) = 4, (2) + A, (Z) p™. (19)
Expression (19) satisfies the symmetry condition when n > 1,

Substituting (19) into (15) and integrating the left- and right-hand sides with respect to p from zero
to unity, we obtain

L A4@) 1 dA@)
S T4z Tal dZ

~ - (29 44 D). (20)

Solving simultaneously (16) and (17) with consideration of (19) and then applying the Laplace transform
to the numerical expression and to Eq. (20), weobtain the following system of equations:
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In (21)~(22) the superior bar denotes Laplace-transformed functions Ay (Z) and A,(Z), it being assumed
that Ay(0) = A, A,(0) = A,

o =27 ‘Zﬁ exp (— s7) dZ.

Solving simultaneously (21) and (22) and assuming that &(s) can be represented as a series™*

*This holds true if Q(z) is expanded in powers of z.

221



s@=Y -, (23)

m=}

we obtain for A, the following equation:
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We seek the solution of (24) in the form
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Substituting (26) into (24) and equating the coefficients of like powers of s to zero, we obtain the fol-
lowing recursion system for determining Dy,:
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From the first relation we have
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Knowing Ki, we can determine Zo from (21). Having performed an inverse Laplace transformation,
we finally find the expression for t(p, Z)
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We can determine the temperature of the gases by using (16) and (28):
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The average temperature of the body is
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Fig. 1. Heating of a plate in a counterflow for Bi =1, Bi; =0.02, m, =2, ¢dV(X) =0. 1)
Temperature of gases; 2) of surface; 3) of axis; 4) q(R/A); 5) exact solution; 6) approxi-~
mate solution by the Brovman-Surin method formulas (9), (11));7) the same, by integral
heat balance method formulas (28), (29)) for n = 2.,

Fig. 2. Calculation of the heating of a plate in a counterflow for my; =0, m; = 0.25, Bi =1,
Bi; =0.02, n =2, Q(z) = const by formulas (28), (29). 1) Temperature of gases; 2) of
surface; 3) average for mass; 4) of axis; 5) q(R/}); 6) presumed change of corresponding
values during initial period of heating.
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An investigation of the convergence of the series in (28)-(30) by means of the d'Alembert test [6] showed
that when my; = 0 they converge for all finite values of Z.

If my =0, it is no longer possible to assign the value of tgis since the water equivalent of the gases
at point Z = 0 is also equal to zero. In this case we mean by tgj its limiting value when my — 0. It is de-
termined by the second of relations (27) when by — 0.

We will assume that on the whole the flow of gases does not have an effect on the burning of fuel in
an elementary jet. Then we can show that the quantity of chemical energy of the combustion products passing
through a given section of the furnace in unit time is determined by the expression

Q@) = Gotm axf5e(@) + Aifmax | G55z — ©) de. 31
0

The subscripts e and s of qgav(z) indicate that they pertain to the end and side burners.

Approximating q?v(z) by the exponential curve

2
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with consideration of (31) we obtain
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TABLE 1. Comparison of the Approximate p- Expanding the exponents of (33) in series and

and Exact p-Values of the Eigenvalues for Bi performing a direct Laplace transformation, we obtain
=1.0, Bi; =0.02, and Constant Ratio of Water the following expression for the coefficients I,, of ex-
Equivalents pression (23):
Forw ard flow Counterflow m . o
e " ] L u | I b = (— 1) inax (2\7 _?_1 5 o g3e— My Bi gasK(s ) (34)
0.5 (1):11;5 (1): iés g:?%%,i g:?g A For check calculations, when the temperature
3,47 2,58 3,39 2,53 of the gases at the site of charging the metalis known
(1),8217 (1’,8216 g’é‘}é g,é‘llf} also for the counterflow, it is advantageous to place
2,0 3,44 2.55 3,42 9,54 the origin of the coordinates at the site of charging the

metal. In this case expressions (27)-(30) hold true; in
(25), as is usual for a counterflow, it is necessary to take the lower signs everywhere and only thereafter
take the values of g, b, and c., with the opposite sign, i.e.,

g =—m, n(Bl-l-n—i—l)
n-+1
m, nBi+n+1)
by = — — Tt 9v 1) + Bi,—n T g 252
° 2v+2n oy B Bat+y (252)
. , £
¢_q=—(mBilg+Bit.;) + (mlBl—l—Bll)(AO—]— i )

Here it is necessary to bear in mind that the value of my, is taken with respect to the water equi-
valent of the gases at the site of charging the metal. In addition, in (31) and (32) it is necessary to replace
z by L — z. Accordingly (33)-(34) will also change. ’

An analysis of expressions (28)-(30) obtained shows that in the general case the temperatire dis-
tribution at the initial instant does not correspond to that given [t(0, 0) = A}, t(1, 0) = A} + AJ], but the
initial conditions with respect to the average temperature and temperature of the gases are fulfilled exactly.
This is explained by the circumstance that in deriving (28) we assumed the fulfillment of boundary condi-
tion (16) for a temperature distribution according to (19) at all instants, beginning with zero. This means
that the relation

(D) =10, Z)+(l + %)[t(l, Z) —t(0, Z)]. (35)

always holds between the temperatures of the gases on the axis and surface of the heated body. Actually
(35) is fulfilled only for Z = 0.3. If it is required to refine the solution for Z < 0.3 and a uniform initial
distribution of temperatures, we can use the idea of the depth of penetration of a thermal wave [8]. In

metallurgical heat engineering the main heating period, when (28)-(30) are valid, is of greatest interest.

Condition (35) is fulfilled when calculating the heating of bodies in a counterflow and location of point
7 = 0 at the site of discharge of the metal, since the distribution of temperatures in the heated bodies at
point Z = 0 is not arbitrary but is governed by the preceding process of heating during which relation (35)
was observed. Therefore, if my > 0, my = € (.e., tgj is also known), one of the following values should
be agsigned:

0 0 2v 42 40 a0 a0
tav(O) A + A m, t(O, 0) == Ao, t(l, O) = Ao =4~ Al. (36)

Then we obtain two equations for determining Ag and A?: one of them is determined by (36) and the other
by (35) written for Z = 0:

n
tg = A0+ Al (1 + B—i). (37)
If my =0 and t(l 0) and At‘I’n =t(1, 0) — t(0, 0) = A} are assigned according to the technological conditions
(.e A8 and A are known), then tgl and m; are determinedby (37) and the second of relations (27). If we

ass1gn only m; and t5y(0), or t(0, 0), or t(1, 0) is known, then tgi, Ao, and A are determined for system of
Egs. (36), (37) and the second of relations (27).
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The exponent n can be selected either by comparison with the exact solution or experimentally. In
the case of heating bodies in an environment with a constant temperature, and also in a parallel flow and
counterflow when Wg = m, = const and moderate values of Bi, we can take approximately n =~ 2 [10].

It follows from a comparison of approximate formulas (9), (11), (28), (29) with the exact solution
of problem (1)-(4) obtained by Laplace transformation, which is shown in Fig. 1, that, beyond the limits
of the initial period, the expressions given here, especially (28) and (29), approximate the exact solution
sufficiently well. Since the values of the temperature of the gases are quite close to the exact also in the
initial period, the temperature t(p, X) in this period, generally speaking, can be refined with the use of the
known solutions [9] for boundary conditions of the third kind and variable temperature of the medium. It is
interesting to note that Eq. (10) gives the squares, taken with the opposite sign, of the approximate values
of the eigenvalues, of which the first two are quite close to the exact (see Table 1).

We must assume that when m; > 0 there will be a satisfactory agreement of the exact and approxi-
mate solutions. Figure 2 presents the results of calculating the heating of a plate in a counterflow for my,
=0, my = 0.25, Bi =1.0, Bi; =0.02.

Expression (9), (11), (13), and (28)~(30) can be used for analyzing the effect of various factors on
heating of bodies and for constructing the optimal regime.

NOTATION

t, tg, r, X are the current temperatures of the body and gases, radius, and distance from the entrance
of the bodies into the furnace;

a, A, o are the coefficients of thermal diffusivity, thermal conductivity, and heat transfer;

R is the radius of the cylinder, sphere, or the half-thickness of the plate;

K is the coefficient of heat losses of the working space;

T is the effective perimeter of the furnace;

v is the linear velocity of the bodies in the furnace;

f is the heating surface of the bodies located per unit length of the furnace;

Wg is the water equivalent of the combustion products;

G is the output of the furnace;

Vg is the quantity of combustion products passing through a given section of the furnace in unit
time;

¢, Cg are the heat capacities of the heated bodies and combustion products;

Qg is the heat of combustion of a unit of fuel;

Lg is the quantity of combustion products formed upon burning a unit of fuel;

v is the specific weight of the material of the heated bodies;

v is the form factor [1];

vpl = 1/2;

Yey = 03

Vep = 1/2;

q?v(y) is the average chemical undercombustion of the combustion products;

ten is the temperature of the environment far from the furnace;

7 is the distance from the gas input into the furnace (for a parallel flow z = x, for a counterflow
z =L —Xx);

L is the length of the furnace occupied by metal;

b is the width of the furnace occupied by metal;

8y is the distance between the axes of adjacent cylinders;

F is the cross-sectional area of the furnace (shaft) filled with spheres;

oy is the ratio of the volume of voids to the total volume of the furnace (shaft);

tg is the temperature of the combustion products entering the furnace through the side burners;

Ke = kgvR%/a, Kg =kgvR?/a;

q is the specific heat flux absorbed by the heated body.

Subscripts

pl  denotes the plate;

cy denotes the cylinder;
sp denotes the sphere;
L; = aL/vR?,
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